Matrices and Vectors

Vectors, matrices, basic facts

Block matrices: A matrix can be represented in block form, for example

BM=[ABCD] BM = \begin{bmatrix} A & B \\ C & D \end{bmatrix}

where ARn×n,BRn×m,CRm×n,DRm×mA \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{m \times m}. The dimensions of the blocks must be compatible.

Upper/Lower Block Triangular Matrix and Upper Triangular Matrix

The matrix

UM=[AB0D]UM = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}

is upper block triangular. Note that it is not upper triangular (it has elements below its main diagonal).

Transpose: ATRn×mA^T \in \mathbb{R}^{n \times m} is the transpose of ARm×nA \in \mathbb{R}^{m \times n}. (AT)ij=aji(A^T)_{ij} = a_{ji}.

Hermitian transpose (also called conjugate transpose): AHCn×mA^H \in \mathbb{C}^{n \times m} is the hermitian transpose of ACm×n.A \in \mathbb{C}^{m \times n}. Example of Hermitian transpose:

Note (Overline notation):

In complex number, the overline notation can indicate a complex conjugate and analogous operations.

Symmetric matrix:

A=ATA = A^T

Skew-symmetric matrix:

AT=AA^T = -A, aji=aij a_{ji} = -a_{ij}

Hermitian matrix: A=AHA = A^H

Matrix multiplication: ARm×n,BRn×p,CRm×p,C=AB. cij=k=1naikbkj.A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{m \times p}, C = AB. \space c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}.  Note that in general ABBAAB \neq BA.

Dot Product of Vectors:

x,yRnx,y \in \mathbb{R}^{n}, the dot product of xx and yy is xTy=i=1nxiyjx^Ty = \sum_{i=1}^{n} x_iy_j

Example:

Outer product of vectors: x,yRnx, y \in \mathbb{R}^n, the outer product of x and y is an n×nn \times n  matrix of rank one. A=xyTA = xy^T. aij=xiyja_{ij} = x_iy_j.

Transpose of a product: (AB)T=BTAT(AB)^T = B^TA^T

Complex dot product: xHy=i=1nxiyix^Hy = \sum_{i=1}^{n} \overline{x_i}y_i. This is not symmetric: xHy=yHx.x^Hy = \overline{y^Hx}.

Orthogonal matrix: ARn×n,ATA=AAT=IA\in\mathbb{R}^{n \times n}, A^TA=AA^T = I.

Example:

Unitary matrix: ACn×nA\in\mathbb{C}^{n \times n}, AHA=AAH=IA^HA = AA^H=I.

Example:

Matrix algebra, basic facts

Proof Tr(AB) = Tr(BA):